This is a must read article from Our Finite World.
It is easy to get the impression that proposed new modular nuclear generating units will solve the problems of nuclear generation. Perhaps they will allow more nuclear electricity to be generated at a low cost and with much less of a problem with spent fuel.
As I analyze the situation, however, the problems associated with nuclear electricity generation are more complex and immediate than most people perceive. My analysis shows that the world is already dealing with “not enough uranium from mines to go around.” In particular, US production of uranium “peaked” about 1980 (Figure 1).
For many years, the US was able to down-blend nuclear warheads (both purchased from Russia and from its own supply) to get around its uranium supply deficit.
Today, the inventory of nuclear warheads has dropped quite low. There are few warheads available for down-blending. This is creating a limit on uranium supply that is only now starting to hit.
Nuclear warheads, besides providing uranium in general, are important for the fact that they provide a concentrated source of uranium-235, which is the isotope of uranium that can sustain a nuclear reaction. With the warhead supply depleting, the US has a second huge problem: developing a way to produce nuclear fuel, probably mostly from spent fuel, with the desired high concentration of uranium-235. Today, Russia is the primary supplier of enriched uranium. (Read the rest)
To summarize, affordable uranium supplies have been dwindling for decades, and are so depleted that we have been dismantling nuclear weapons, and scavenging the uranium-235 for use in reactors. One wonders if the shut down of nuclear reactors in Japan after the Fukushima incident had something to do with a lack of fuel to operate them.
As usual, the Men Who Run the World and the Ministry of Truth are not telling us the truth. Instead they feed us bullshit hopium stories involved recycling spent fuel, thorium reactors, and other non-viable solutions to our inescapable energy predicament.
Just as they indoctrinate with The Three Pillars of Bullshit to convince the barnyard animals that we are transitioning to a renewable energy world.
However they must do this, because humans are stupid, and they cannot handle the truth. Humans are also dangerous so they must be controlled otherwise the barnyard animals will destroy the farm. They also must be slowly poisoned to ensure they don’t live too long.
The author of this article has punctured the ‘nuclear energy will save us’ fantasy. But then, even if nuclear power could be ramped up, it was never going supply the world’s energy needs. At best we might have kicked the can a few more years down the road because the master resource is in deep depletion and electricity cannot replace oil.
Why nuclear power will never supply the world's energy needs
The 440 commercial nuclear reactors in use worldwide are currently helping to minimize our consumption of fossil fuels, but how much bigger can nuclear power get? In an analysis to be published in a future issue of the Proceedings of the IEEE, Derek Abbott, Professor of Electrical and Electronic Engineering at the University of Adelaide in Australia, has concluded that nuclear power cannot be globally scaled to supply the world’s energy needs for numerous reasons.
As Abbott notes in his study, global power consumption today is about 15 terawatts (TW). Currently, the global nuclear power supply capacity is only 375 gigawatts (GW). In order to examine the large-scale limits of nuclear power, Abbott estimates that to supply 15 TW with nuclear only, we would need about 15,000 nuclear reactors. In his analysis, Abbott explores the consequences of building, operating, and decommissioning 15,000 reactors on the Earth, looking at factors such as the amount of land required, radioactive waste, accident rate, risk of proliferation into weapons, uranium abundance and extraction, and the exotic metals used to build the reactors themselves.
“A nuclear power station is resource-hungry and, apart from the fuel, uses many rare metals in its construction,” Abbott told PhysOrg.com. “The dream of a utopia where the world is powered off fission or fusion reactors is simply unattainable. Even a supply of as little as 1 TW stretches resources considerably.”
His findings, some of which are based on the results of previous studies, are summarized below.
Land and location: One nuclear reactor plant requires about 20.5 km2 (7.9 mi2) of land to accommodate the nuclear power station itself, its exclusion zone, its enrichment plant, ore processing, and supporting infrastructure. Secondly, nuclear reactors need to be located near a massive body of coolant water, but away from dense population zones and natural disaster zones. Simply finding 15,000 locations on Earth that fulfill these requirements is extremely challenging.
Lifetime: Every nuclear power station needs to be decommissioned after 40-60 years of operation due to neutron embrittlement - cracks that develop on the metal surfaces due to radiation. If nuclear stations need to be replaced every 50 years on average, then with 15,000 nuclear power stations, one station would need to be built and another decommissioned somewhere in the world every day. Currently, it takes 6-12 years to build a nuclear station, and up to 20 years to decommission one, making this rate of replacement unrealistic.
Nuclear waste: Although nuclear technology has been around for 60 years, there is still no universally agreed mode of disposal. It’s uncertain whether burying the spent fuel and the spent reactor vessels (which are also highly radioactive) may cause radioactive leakage into groundwater or the environment via geological movement.
Accident rate: To date, there have been 11 nuclear accidents at the level of a full or partial core-melt. These accidents are not the minor accidents that can be avoided with improved safety technology; they are rare events that are not even possible to model in a system as complex as a nuclear station, and arise from unforeseen pathways and unpredictable circumstances (such as the Fukushima accident). Considering that these 11 accidents occurred during a cumulated total of 14,000 reactor-years of nuclear operations, scaling up to 15,000 reactors would mean we would have a major accident somewhere in the world every month.
Proliferation: The more nuclear power stations, the greater the likelihood that materials and expertise for making nuclear weapons may proliferate. Although reactors have proliferation resistance measures, maintaining accountability for 15,000 reactor sites worldwide would be nearly impossible.
Uranium abundance: At the current rate of uranium consumption with conventional reactors, the world supply of viable uranium, which is the most common nuclear fuel, will last for 80 years. Scaling consumption up to 15 TW, the viable uranium supply will last for less than 5 years. (Viable uranium is the uranium that exists in a high enough ore concentration so that extracting the ore is economically justified.)
Uranium extraction from seawater: Uranium is most often mined from the Earth’s crust, but it can also be extracted from seawater, which contains large quantities of uranium (3.3 ppb, or 4.6 trillion kg). Theoretically, that amount would last for 5,700 years using conventional reactors to supply 15 TW of power. (In fast breeder reactors, which extend the use of uranium by a factor of 60, the uranium could last for 300,000 years. However, Abbott argues that these reactors’ complexity and cost makes them uncompetitive.) Moreover, as uranium is extracted, the uranium concentration of seawater decreases, so that greater and greater quantities of water are needed to be processed in order to extract the same amount of uranium. Abbott calculates that the volume of seawater that would need to be processed would become economically impractical in much less than 30 years.
Exotic metals: The nuclear containment vessel is made of a variety of exotic rare metals that control and contain the nuclear reaction: hafnium as a neutron absorber, beryllium as a neutron reflector, zirconium for cladding, and niobium to alloy steel and make it last 40-60 years against neutron embrittlement. Extracting these metals raises issues involving cost, sustainability, and environmental impact. In addition, these metals have many competing industrial uses; for example, hafnium is used in microchips and beryllium by the semiconductor industry. If a nuclear reactor is built every day, the global supply of these exotic metals needed to build nuclear containment vessels would quickly run down and create a mineral resource crisis. This is a new argument that Abbott puts on the table, which places resource limits on all future-generation nuclear reactors, whether they are fueled by thorium or uranium.
As Abbott notes, many of these same problems would plague fusion reactors in addition to fission reactors, even though commercial fusion is still likely a long way off.
The whole renewables thing is bullshit. This last week on the UK we've had no wind. I have solar on my boat and as the sun gets lower in the sky the solar performance drops off enormously. Add in overcast days and my 1kw system barely produces enough to charge a toothbrush.
I hate to be "that" guy to say it but our modern world was built on cheap to extract fossil fuels and it will take fossil fuels to keep the lights on with industrial civilization. Except we used all the cheap stuff and it's getting harder and harder to find.